Experimental

The title compound was synthesized from $\mathrm{Cd}\left(\mathrm{NO}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $4,4^{\prime}$-bipyridine and 2 -nitroaniline in ethanol by a molecular self-assembly reaction. X-ray quality single crystals were obtained by slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$--
Mo $K \alpha$ radiation
$2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=825.04$
Monoclinic
$C 2 / c$
$a=21.850(2) \AA$
$b=11.7687$ (7) \AA
$c=13.3256(8) \AA$
$\beta=100.544(2)^{\circ}$
$V=3368.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.627 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Bruker SMART CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.800, T_{\text {max }}=0.930$
9000 measured reflections 3519 independent reflections
$\lambda=0.7107 \AA$
Cell parameters from 1096 reflections
$\theta=1.34-27.09^{\circ}$
$\mu=0.724 \mathrm{~mm}^{-1}$
$T=298.2 \mathrm{~K}$
Prism
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$
Yellow

Refinement

Refinement on F^{2}
$R(F)=0.051$
$w R\left(F^{2}\right)=0.083$
$S=1.09$
2733 reflections
242 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+\right.$
$\left.0.00055\left|F_{o}\right|^{2}\right]$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cd}-\mathrm{O} 2$	2.352 (3)	$\mathrm{Nl}-\mathrm{Cl}$	1.342 (4)
$\mathrm{Cd}-\mathrm{O}^{\text {i }}$	2.352 (3)	N2-C6	1.339 (4)
$\mathrm{Cd}-\mathrm{N} 1^{\prime \prime}$	2.341 (4)	N3-C7	1.331 (4)
$\mathrm{Cd}-\mathrm{N} 2$	2.348 (4)	N5-C17	1.336 (7)
$\mathrm{Cd}-\mathrm{N} 3$	2.349 (2)	N6-C12	1.442 (7)
$\mathrm{Cd}-\mathrm{N} 3^{1}$	2.349 (2)	$\mathrm{Cl}-\mathrm{C} 2$	1.381 (4)
$\mathrm{O} 1-\mathrm{N} 4$	1.152 (5)	C2--C3	1.391 (4)
$\mathrm{O} 2-\mathrm{N} 4$	1.249 (4)	C3--C4	1.485 (5)
$\mathrm{O} 3-\mathrm{N} 4$	1.218 (4)	C4-C5	1.383 (4)
O4-N6	1.244 (7)	C5-C6	1.381 (4)
O5-N6	1.223 (6)		
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O}^{1}$	178.9 (1)	$\mathrm{Ni}{ }^{\text {in }}$ - $\mathrm{Cd}-\mathrm{N} 2$	180.0
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{N} 3$	97.3 (1)	$\mathrm{Nl}^{11}-\mathrm{Cd}-\mathrm{N} 3$	94.71 (6)
$\mathrm{O} 22^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Nl}^{\text {if }}$	90.55 (7)	$\mathrm{N} 2-\mathrm{Cd}-\mathrm{N} 3$	85.29 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd}-\mathrm{N} 3$	82.6 (1)	Cd-O2-N4	128.1 (2)

Symmetry codes: (i) $2-x, y, \frac{1}{2}-z$; (ii) $x, y-1, z$.
All H atoms were calculated and included in the structural model, but were fixed and not refined.

Data collection: SMART (Siemens, 1994). Cell refinement: SAINT (Siemens, 1994). Data reduction: SAINT. Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1995). Software used to prepare material for publication: TEXSAN.

This work was supported by the US National Science Foundation (grant No. DMR9733275).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1076). Services for accessing these data are described at the back of the journal.

References

Abrahams, B. F., Hoskins, B. F. \& Winter, G. (1990). Aust. J. Chem. 43, 1759-1765.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Fujita, M., Kwon, Y. J., Washizu, S. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Huang. S. D. \& Xiong, R.-G. (1997). Polyhedron. 16, 3929-3939.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crustal Structure Analysis Softuare. Version 1.7. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1996). SADABS. Program for Absorption Corrections. University of Göttingen, Germany.
Siemens (1994). SMART and SAINT. Data Collection and Integration Software. Versions 4.021. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, Z. Y., Xiong, R. G., Foxman, B. M.. Wilson. S. R. \& Lin. W. B. (1999). Inorg. Chem. 38, 1523-1528.

Acta Cryst. (1999). C55, 2018-2020

[1,1'-Bis(diphenylphosphino)ferrocene]trichloro(phenylimido)rhenium(V) dichloromethane solvate

Soon W. Lee and Nam-Sun Choi
Department of Chemistry; Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea. E-mail: swlee@chem.skku.ac.kr

(Received 24 May 1999: accepted 6 September 1999)

Abstract

In the title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{FeP}_{2}\right)\right]$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the coordination sphere of the Re atom can be described as a distorted octahedron. The two cyclopentadienyl ligands in the $1,1^{\prime}$-bis(diphenylphosphino)ferrocene moiety adopt a gauche conformation.

Comment

Various redox-active ligands have been reported to control the reactivities of transition metal complexes (Gan \& Hor, 1995). 1, 1'-Bis(diphenylphosphino)ferrocene (dppf) is a well known redox-active ligand and its complexes are expected to exhibit a ferrocene-centred oxidation process, together with the complimentary redox process at other metal centres in the molecule. In the course of our work on rhenium-imido compounds, aimed at investigating their reactivities and tuning their redox potentials, we prepared the title compound, (I).

(I)

The coordination sphere of the Re atom can be described as a distorted octahedron. The equatorial plane, defined by $\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Pl}$ and P 2 , is roughly planar, with an average atomic displacement of $0.1008 \AA$. The Re atom lies below the equatorial plane by 0.1734 (8) \AA. The imido phenyl ring (Cl-C6) is twisted out of the equatorial plane with a dihedral angle of $78.5(2)^{\circ}$. The $\mathrm{Re}-\mathrm{Cl}$ bond distance [2.3961 (15) \AA] trans to the imido ligand is shorter than those $[2.4193(15)$ and 2.4392 (15) \AA] trans to the phosphine ligands.

The two cyclopentadienyl (Cp) rings are not perfectly parallel but twisted from each other with a dihedral angle of $3.9(4)^{\circ}$. The $\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12-\mathrm{P} 2$ torsion angle is $25.2(3)^{\circ}$, indicating that the two Cp rings adopt a gauche (or staggered) conformation. For comparison, the ideal torsion angle for the gauche conformation is 36°. The $\mathrm{Fe}-\mathrm{Ct}$ (Ct is a Cp ring centroid) distances are 1.646 (for $\mathrm{Ct2}$, the C12-C16 centroid) and $1.651 \AA$ (for $C t 1$, the $\mathrm{C} 7-\mathrm{C} 11$ centroid), and the $\mathrm{Ct} 1-\mathrm{Fe}-\mathrm{Ct} 2$ angle is 176.92°. The $\mathrm{P} 1 \cdots \mathrm{Fe} \cdots \mathrm{P} 2$ bite angle is $66.83(4)^{\circ}$ and the $\mathrm{P} 1 \cdots \mathrm{P} 2$ distance is $3.822(2) \AA$. These bonding parameters within the ferrocene moiety are consistent with those found in octahedral rhenium complexes in which a dppf fragment acts as a ligand (Gan \& Hor, 1995).

Of particular interest are the bonding parameters of the $\mathrm{Re}-\mathrm{N}-\mathrm{C}$ bond. The $\mathrm{Re}-\mathrm{N}-\mathrm{C}$ bond angle of $170.7(4)^{\circ}$ is fairly typical of the phenylimido (NPh) ligand in a high oxidation-state complex, in which the metal is relatively electron deficient and some π bonding between the imido N atom and the metal is likely (Wigley, 1994). This angle indicates that the phenylimido group is linear and that the $\mathrm{Re}-\mathrm{N}$ bond has triple-bond character with an $s p$-hybridized
nitrogen. The $\mathrm{Re}-\mathrm{N}$ bond distance of 1.717 (5) \AA is also consistent with those found in arylimido-rhenium compounds (Nugent, 1988). The formal oxidation state of the Re atom is +5 , indicating that it is unchanged in the reaction. The Re atom is an 18-electron centre, assuming that the NPh ligand is a six-electron donor. The Re••Fe distance is 4.451 (1) \AA, which clearly rules out direct bonding between the two metals.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

A mixture of mer, trans $-\left[\mathrm{ReCl}_{3}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(0.29 \mathrm{~g}$, $0.32 \mathrm{mmol})$ (Goeden \& Haymore, 1983) and dppf (0.183 g , 0.33 mmol) (de Lang et al., 1995) in benzene (60 ml) was refluxed for 1 h . The resulting green precipitates were filtered off and washed with benzene $(2 \times 30 \mathrm{ml})$, diethyl ether $(2 \times$ $30 \mathrm{ml})$ and pentane $(1 \times 30 \mathrm{ml})$ to give the title compound. Recrystallization from dichloromethane-hexane gave a dichloro-methane-solvated product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.665-8.015$ $(25 \mathrm{H}, m, \mathrm{Ph}), 5.270(2 \mathrm{H}, s, b r, \mathrm{Cp}), 4.676(2 \mathrm{H}, s, b r, \mathrm{Cp})$, $4.639(2 \mathrm{H}, s$, br, Cp$), 4.583$ p.p.m. $(2 \mathrm{H}, s, b r, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}\right): \delta 155.133(s, \mathrm{Ph}), 136.017(t, J=4.15 \mathrm{~Hz}, \mathrm{Ph})$, $135.692(s, \mathrm{Ph}), 134.790(d, J=4.65 \mathrm{~Hz}, \mathrm{Ph}), 134.359(s, \mathrm{Ph})$, $133.897(s, \mathrm{Ph}), 130.900(d, J=13.58 \mathrm{~Hz}, \mathrm{Ph}), 129.560(s$, $\mathrm{Ph}), 129.016(s, \mathrm{Ph}), 128.450(d, J=5.16, \mathrm{Ph}), 127.968(t, J=$ $5.16 \mathrm{~Hz}, \mathrm{Ph}), 122.497(s, \mathrm{Ph}), 84.620(s, \mathrm{Cp}), 84.154(s, \mathrm{Cp})$, 76.835 (s, Cp), 75.485 (s, Cp), 73.715 (s, Cp), 73.195 p.p.m. $(s, \mathrm{Cp}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right):-17.190$ p.p.m. (s).

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Cl}_{3}-\right.$
$\left.\left(\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{FeP}_{2}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1022.94$
Monoclinic
$P 2_{1} / n$
$a=11.093$ (2) \AA
$b=21.665$ (4) \AA
$c=16.823(5) \AA$
$\beta=104.404(18)^{\circ}$
$V=3916.1(16) \AA^{3}$
$Z=4$
$D_{x}=1.735 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.632, T_{\text {max }}=0.731$
7673 measured reflections
7284 independent reflections 5538 reflections with
$F>4 \sigma(F)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 38 reflections
$\theta=1.99-25.5^{\circ}$
$\mu=3.913 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Plate
$0.60 \times 0.10 \times 0.08 \mathrm{~mm}$
Green
$R_{\mathrm{int}}=0.033$
$\theta_{\text {max }}=25.50^{\circ}$
$h=0 \rightarrow 13$
$k=-26 \rightarrow 0$
$l=-20 \rightarrow 19$
3 standard reflections every 97 reflections intensity decay: none

This paper was supported by the 63 Research Fund of Sung Kyun Kwan University (1997).

Supplementary data for this paper are available from the IUCr_{r} electronic archives (Reference: DA1088). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SHELXTL. Structure Determination Software Programs. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia. L. J. (1997). J. Appl. Cryst. 30, 565.
Gan, K.-S. \& Hor, T. S. A. (1995). Ferrocenes, edited by A. Tongni \& T. Hayashi, pp. 3-104. New York: VCH.
Goeden, G. V. \& Haymore, B. L. (1983). Inorg. Chem. 22, 157-167.
Lang, R.-J. de, van Soolingen, J., Verkruijsse, H. D. \& Brandsma, L. (1995). Synth. Commun. 25, 2989-2991.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359
Nugent, W. A. (1988). In Metal-Ligand Multiple Bonds. New York: John Wiley \& Sons.
Siemens (1995). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wigley. D. E. (1994). Prog. Inorg. Chem. 42, 239-482.

Acta Cryst. (1999). C55, 2020-2023

Carbonyl- μ-dimethylacetylene dicarboxylate and carbonyl- μ-methyltetraolate manganesecobalt complexes

Karsten Beck, \dagger Jeanette A. Krause Bauer and John J. Alexander

Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA. E-mail:
john.j.alexander@uc.edu
(Received 16 April 1999; accepted 19 July 1999)

Abstract

The title complexes, heptacarbonyl $-1 \kappa^{4} C, 2 \kappa^{3} C-\mu$ (dimethyl but-2-ynedioato)-1:2 $\kappa^{2} C^{2}, 1: 2 \kappa^{2} C^{3}$-cobaltmanganese $(\mathrm{Mn}-\mathrm{Co})$, $\left[\mathrm{MnCo}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)(\mathrm{CO})_{7}\right]$, (5), and heptacarbonyl-1 $\kappa^{4} C, 2 \kappa^{3} C$ - μ-(methyl but-2-ynoato)$1: 2 \kappa^{2} C^{2}, 1: 2 \kappa^{2} C^{3}$-cobaltmanganese ($\mathrm{Mn}-\mathrm{Co}$), [MnCo $\left.\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}\right)(\mathrm{CO})_{7}\right]$, (6), were synthesized from $\mathrm{MnCo}(\mathrm{CO})_{9}$ and the corresponding alkyne. The $\mathrm{Mn}-\mathrm{Co}$ bond length is 2.5527 (5) \AA for (5) and 2.5468 (4) \AA for (6). The alkyne $\mathrm{C}-\mathrm{C}$ bond is perpendicular to the $\mathrm{Mn}-\mathrm{Co}$ bond.

^[\dagger Current address: Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.]

